Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces
نویسندگان
چکیده
The performance of EEG-based Brain-Computer-Interfaces (BCIs) critically depends on the extraction of features from the EEG carrying information relevant for the classification of different mental states. For BCIs employing imaginary movements of different limbs, the method of Common Spatial Patterns (CSP) has been shown to achieve excellent classification results. The CSP-algorithm however suffers from a lack of robustness, requiring training data without artifacts for good performance. To overcome this lack of robustness, we propose an adaptive spatial filter that replaces the training data in the CSP approach by a-priori information. More specifically, we design an adaptive spatial filter that maximizes the ratio of the variance of the electric field originating in a predefined region of interest (ROI) and the overall variance of the measured EEG. Since it is known that the component of the EEG used for discriminating imaginary movements originates in the motor cortex, we design two adaptive spatial filters with the ROIs centered in the hand areas of the left and right motor cortex. We then use these to classify EEG data recorded during imaginary movements of the right and left hand of three subjects, and show that the adaptive spatial filters outperform the CSP-algorithm, enabling classification rates of up to 94.7 % without artifact rejection.
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملBeamforming in Noninvasive Brain-Computer Interfaces
Spatial filtering (SF) constitutes an integral part of building EEG-based brain-computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject's intention, which renders these algorithms susceptible to overfitting on artifactual E...
متن کاملComparison of Adaptive Spatial Filters with Heuristic and Optimized Region of Interest for EEG Based Brain-Computer-Interfaces
Research on EEG based brain-computer-interfaces (BCIs) aims at steering devices by thought. Even for simple applications, BCIs require an extremely effective data processing to work properly because of the low signal-to-noise-ratio (SNR) of EEG signals. Spatial filtering is one successful preprocessing method, which extracts EEG components carrying the most relevant information. Unlike spatial ...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006